Identification of key genes and pathways in Rheumatoid Arthritis gene expression profile by bioinformatics

$Lu W^{1}$, $Li G^{1}$

ACTA REUMATOL PORT. 2018;43:109-131

ABSTRACT

Objective: The aim of this study was to identify potential key candidate genes and uncover their potential mechanisms in rheumatoid arthritis.

Materials and methods: The gene expression profiles of GSE12021, GSE55457, GSE55584 and GSE55235 were downloaded from the gene expression omnibus database, including 45 rheumatoid arthritis and 29 normal samples. The differentially expressed genes between the two types of samples were identified with the Linear Models for Microarray Analysis package using R language. The gene ontology functional and pathway enrichment analyses of differentially-expressed genes were performed using the database for annotation, visualization and integrated discovery software followed by the construction of a protein–protein interaction network. In addition, hub gene identification and gene ontology functional and pathway enrichment analyses of the modules were performed.

Results: The differentially expressed genes were mainly involved in immune response, inflammatory response, chemokine-mediated signaling pathway for rheumatoid arthritis patients. The top hub genes such as interleukin 6, jun proto-oncogene, chemokine receptor 5 and epidermal growth factor receptor, were identified from the protein–protein interaction network. Sub-networks revealed hub genes were involved in significant pathways, including chemokine signaling pathway, cytokine-cytokine receptor interaction, tumor necrosis factor signaling pathway. The seed node gene is toll-like receptor 7 and growth arrest and deoxyribonucleic-acid -damage-inducible beta, in the model-1 and model-2 by module analysis, respectively.

Conclusion: These hub genes may be used as potential targets for rheumatoid arthritis diagnosis and treatment.

Keywords: Bioinformatics analysis; Rheumatoid arthritis; Network module; Enrichment analysis

INTRODUCTION

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation and damage or destruction of the joints, which can produce a loss of functionality, reduces quality of life and enhances morbidity and mortality¹. RA affects about 24.5 million people as of 2015. This is between 0.5 and 1% of adults in the developed world, with 5 and 50 per 100,000 people newly developing the condition each year². While the cause of RA is not clear, it is believed to involve a combination of genetic and environmental factors. The underlying mechanism involves the body's immune system and inflammation of joints and results in inflammation and thickening of the synovium. It also affects the underlying cartilage and bone. Modern studies have enumerated a positive involvement of inflammatory mechanism through synovial cellular infiltrate, as well as peripheral blood inflammatory cells³. Polymorphonuclear neutrophils and lymphocytes play a pivotal role in synovial inflammation and joint damage. Moreover, genome-wide analyses have verified that immune regulatory factors underlie the disease4.

The main goal of RA treatment is to stop inflammation, relieve symptoms, prevent joint and organ damage, improve physical function and reduce long-term complications¹. The treatment of RA was fully unsolved over the past decade, with the increased number of efficacious agents and the development of novel treatment strategies¹. Unfortunately, all of the agents only ameliorated symptoms and failed to cure the disease. Results from many clinical studies conducted to date have shown benefits and in all cases mentioned significant effect on appropriate biological targets⁵. Thus, development of new therapies enables better diagnosis and treatment of chronic diseases using genetic or bio-

^{1.} Department of Biomedical Engineering, College of Electronic and Information Engineering, Xi'an Technological University

logical approaches. Microarrays are one of the highthroughput platforms for analysis of gene expression and served as key tools in medical oncology with great clinical applications, such as molecular diagnosis and classification of diseases. In the last decade, a large number of gene expression profiling researches on RA have been reported by microarray technology and revealed many differentially expressed genes (DEGs) involved in different pathways, biological processes, or molecular functions^{6,7}. Comparative analysis of the DEGs in independent studies shows a relatively limited degree of overlap, and no reliable biomarker profile discriminating inflamed from normal tissue has been identified. However, the integrated bioinformatics methods combining with expression profiling techniques will be innovative and might solve the disadvantages.

This study used microarray gene expression profile to identify biomarkers and pathways involved in RA. On the basis of analyzing their biological functions and pathways, we may show the further insight of RA development at molecular level and explored the potential candidate biomarkers for diagnosis, prognosis, and drug targets.

MATERIALS AND METHODS

MICROARRAY DATA

The gene expression profiles were downloaded from the gene expression omnibus (GEO) database. Four GEO series (GSE) were used in our study, which was GSE12021, GSE55457, GSE55584 and GSE55235, respectively. Criteria for selecting the data sets were selected as follows: (1) the GEO platform (GPL) is GPL96 (Affymetrix Human Genome U133A Array); (2) the number of samples is greater than 10; (3) the samples are from synovial membrane patients. They were based on the GEO platform 96 (Affymetrix Human Genome U133A Array). The dataset of GSE12021 included synovial membrane samples of 12 RA patients and 9 normal controls8. The dataset of GSE55457 included synovial membrane samples of 13 RA patients and 10 normal controls9. The dataset of GSE55584 included synovial membrane samples of 10 RA patients9. The dataset of GSE55235 included synovial membrane samples of 10 RA patients and 10 normal controls9. These 4 datasets were chosen for integrated analysis in this study including 45 RA samples and 29 normal samples.

DATA PREPROCESSING AND DEGS SCREENING

The raw data was preprocessed by Affy package (R/ /Bioconductor) of R language following the three steps: background adjustment, quantile normalization, logarithmic transformation and finally summarization¹⁰. Then the expression matrix with probe level was transformed to matrix with gene level based on annotation files. Multiple Linear Regression limma was applied for DEGs analysis¹¹. The ComBat function of sva package was used to remove known batch effects from microarray data¹². Similarly, the DEGs of each series was analyzed by the same method without sva package. GSE55584 did not include normal samples, and the DEGs of it was unable to analyze. The degree of overlap of DEGs between them was showed with venn diagram using VennDiagram package of R language. Volcano plot was used to display both average fold change and p-value, which was generated by using ggplots package of R language. DEGs were identified with classical t test, statistically significant DEGs were defined with p < 0.01 and $\log 2$ -fold change ($\log 2FC$) > 1 as the cut-off criterion.

HIERARCHICAL CLUSTERING ANALYSIS

After extracting the expression values from the gene expression profile, a bidirectional hierarchical clustering heatmap was constructed using gplots package of R language.

FUNCTIONAL AND PATHWAY ENRICHMENT ANALYSIS

The database for Annotation, Visualization and Integrated Discovery (DAVID) was used to classify significant DEGs by their biological processes, molecular functions, or cellular components using gene ontology consortium reference (GO) and the significant transcripts (Benjamini-Hochberg false discovery rate <0.05) were identified using the Functional Annotation clustering tool¹³. The DAVID database was also used to perform pathway enrichment analysis with reference from kyoto encyclopedia of genes and genomes (KEGG) database website and Benjamini-Hochberg false discovery rate (FDR) <0.05 as a cut-off point.

PROTEIN-PROTEIN INTERACTION NETWORK CONSTRUCTION AND MODULE ANALYSIS

In the construction of the protein–protein interaction (PPI) networks, the search tool for the retrieval of interacting genes (STRING) version 10.5 (http://www. string-db.org/) was used¹⁴. This is a web biological database for prediction of known and unknown protein interaction relationships. The DEGs with required confidence (combined score) >0.4 were selected, and then the PPI network was constructed and visualized using cytoscape software version $3.5.0^{15}$. The plug-in molecular complex detection (MCODE) was used to screen the modules of PPI network in cytoscape¹⁶. The criteria were set as follows: MCODE scores>5 and number of nodes>5. Moreover, the function and pathway enrichment analysis were performed for DEGs in the modules. p<0.05 was considered to have significant differences.

RESULTS

IDENTIFICATION OF DEGS

Using p<0.01 and |logFC|>1 as cut-off criterion, a total of 229 DEGs were identified from the four profile datasets including 145 up-regulated genes and 84 down-regulated genes in the RA samples compared to normal samples (supplementary file Table I – online only), which was showed by volcano plot (Figure 1). The gene expression values were extracted and a hierarchical clustering heat map was plotted to present the DEGs (Figure 2). After integrated bioinformatical ana-

FIGURE 1. Volcano plot showing all the genes expression change in rheumatoid arthritis compared to the normal samples. Grey represents no change in expression, blue represents down-regulation, and red represents up-regulation.

FIGURE 2. Heat map showing up-regulated and down-regulated differentially expressed genes in rheumatoid arthritis compared to the normal samples. The expression values are log2 fold changes (>1 or <–1) between normal tissues and rheumatoid arthritis samples. Green represents down-regulation and red represents up-regulation

lysis, total of 103 consistently expressed genes were identified from the four parts data (Figure 3), including 74 up-regulated genes and 29 down-regulated genes in the synovial tissue from rheumatoid arthritis joint, compared to the normal tissue.

GO FUNCTIONAL AND PATHWAY ENRICHMENT ANALYSIS

GO analysis results showed that the DEGs were significantly enriched in biological processes including immune response, inflammatory response, chemokinemediated signaling pathway, response to lipopolysaccharide and cellular response to tumor necrosis factor. For cell component, the DEGs were significantly enriched in extracellular region, external side of plasma membrane, extracellular space, extracellular matrix, and so on. In addition, GO analysis also displayed that the DEGs were significantly enriched in antigen binding, chemokine activity and transcriptional activator activity for molecular function (Table I).

KEGG signaling pathway analysis results showed that the DEGs were significantly enriched in cytokine-cy-

FIGURE 3. Identification of 103 commonly changes differentially expressed genes from the four parts data (List 1: GSE12021; List 2: GSE55235; List 3: GSE55457; List 4: 229 differentially expressed genes by integrating analysis of GSE12021, GSE55235, GSE55457, GSE55584). Different color areas represented different parts.

tokine receptor interaction, chemokine signaling pathway, toll-like receptor signaling pathway, inflammatory bowel disease, and rheumatoid arthritis (Table I).

PPI NETWORK CONSTRUCTION AND HUB GENE IDENTIFICATION

Based on the information in the STRING database, PPI relationships were obtained and the hub genes or proteins in the networks with connectivity degree >10 were identified (Figure 4). The top 20 hub nodes with higher degrees were screened (Table II). These hub genes included interleukin 6 (IL6), jun proto-oncogene (JUN), finkel–biskis–jinkins (FBJ) murine osteosarcoma viral oncogene homolog (FOS), protein tyrosine phosphatase receptor type C (PTPRC), v-myc avian myelocytomatosis viral oncogene homolog (MYC), chemokine (*C*-*C* motif) ligand 5 (*CC*L5), and so on. Among these genes, IL6 showed the highest node degree, which was 58.

MODULE ANALYSIS

Two modules with MCODE scores>5 and nodes>5 were selected in the PPI networks. Cluster-1 (MCODE scores=8.5) was with 27 nodes and 111 edges, and the seed node was toll-like receptor 7 (TLR7) which was up-regulated expression. Cluster-2 (MCODE scores=5) was with 13 nodes and 30 edges, and the seed node was GADD45B which was down-regulated expression (Figure 5). In addition, the KEGG pathway analysis revealed that the hub genes in modules were significan-

TABLE I. GENE ONTOLOGY AND PATHWAY ENRICHMENT ANALYSIS OF DIFFERENTIALLY EXPRESSED GENES FUNCTION IN RHEUMATOID ARTHRITIS (TOP 5 IN EACH CATEGORY)

Category	Term	Count	P-value	Genes
BP	GO:0006955~immune	36	1.88E-23	HLA-DQB1, C7, IGHV1-69, IL27RA, IGKV1-17, JCHAIN,
	response			CXCL9, IL32, IL7R, CXCL11, CCL5, CXCL10, FCGR1B,
				HLA-DRB4, IL2RG, IGKC, NFIL3, CD27, IL6, GZMA,
				CCL19, AIM2, CCL18, CCR7, CCL13, FCGR2B, CCR5,
				CXCL13, IGLV2-14, IGHD, CCR2, IGKV4-1, HLA-DPA1,
				IGLV3-25, SEMA4D, ADAMDEC1
BP	GO:0006954~	21	4.58E-10	IL6, PTGS2, CXCL9, CCL19, CXCL11, CCL5, TLR7,
	inflammatory response			AIM2, CCL18, CXCL10, FOS, SDC1, CCL13, CCR7, CCR5,
				CXCL13, CCR2, PLA2G2D, CD27, SPP1, BLNK
BP	GO:0070098~	10	2.08E-08	CCL13, CCR5, CXCL13, CCR2, CXCL9, CCL19, CCL5,
	chemokine-mediated			CXCL11, CCL18, CXCL10
	signaling pathway			
BP	GO:0032496~response	13	4.84E-08	PTGS2, CXCL9, CXCL11, JUNB, CXCL10, PCK1, FOS,
	to lipopolysaccharide			CCR7, ADM, CXCL13, JUN, LOXL1, CD27
BP	GO:0071356~cellular	11	8.56E-08	ZFP36, ZFP36L2, CCL13, IL6, SFRP1, CCL19, FABP4,
	response to tumor			COL1A1, CCL5, CCL18, PCK1
	necrosis factor			
СС	GO:0005576~	48	1.72E-13	IGHG1, C7, IGHV1-69, IGKV1-17, LTBP4, JCHAIN,
	extracellular region			CXCL9, MMP3, IL7R, CCL5, CXCL11, MMP1, CXCL10,
				ANGPTL7, APOD, FCMR, GSN, GPX3, CD2, COL6A1,
				IGKC, LOXL1, CD27, SPP1, CYR61, ADAM28, LPL, IL6,
				GZMA, MZB1, CCL19, COL5A1, LAMA2, CCL13, GZMK,
				SFRP1, ADM, IGLV2-14, CXCL13, COL1A2, HBEGF,
				IGKV4-1, COL1A1, IGLV3-25, GDF15, PLA2G2D,
				ADAMDEC1, GBP1
СС	GO:0009897~external	17	9.24E-11	IGHG1, PTPRC, IL6, CXCL9, IL7R, IGHM, CXCL10,
	side of plasma			SDC1, CCR7, CCR5, IGHD, MS4A1, CD2,
	membrane			HLA-DRB4, IL2RG, IGKC, CD27
СС	GO:0005615~	33	3.48E-07	IGHG1, LTBP4, JCHAIN, CXCL9, IL32, MMP3, CXCL11,
	extracellular space			CCL5, IGHM, CXCL10, APOD, GSN, GPX3, MS4A1, IGKC,
				LOXL1, SPP1, EGFR, LPL, FLRT2, IL6, CCL19, CCL18,
				CCL13, SFRP1, ADM, CXCL13, COL1A2, HBEGF, ALOX5,
				COL1A1, SEMA4D, GDF15
СС	GO:0031012~	13	1.57E-05	LAMA2, ASPN, LPL, SFRP1, LTBP4, EIF4A1, COL1A2,
	extracellular matrix			COL6A1, COL1A1, LOXL1, MMP1, COL5A1, CYR61
СС	GO:0005886~	61	3.31E-05	IL27RA, IGKV1-17, IGHM, SKAP2, TLR7, EDNRB, TRAC,
	plasma membrane			GSN, ERAP2, EGFR, CD3D, EFNB2, TNFRSF17, PRKCB,
				CD38, CCR7, SDC1, CCR5, HAS1, IGLV2-14, IGHD, CCR2,
				LCK, IGKV4-1, HLA-DPA1, IGLV3-25, SEMA4D, BTN3A3,
				BTN3A2, GAP43, GBP1, HLA-DQB1, ABCA8, IGHV1-69,
				PLXNC1, ZBTB16, IL7R, GPRC5A, SLC19A2, PLPP3,
				RASGRP1, FCGR1B, HLA-DRB4, CD2, SLC39A8, IL2RG,
				IGKC, CD27, BLNK, ADAM28, FLRT2, LPL, PTPRC, KLF9,
				ITGA4, RGS16, CORO1A, LAMP3, SFRP1, FCGR2B,
				HBEGF
				continues on the next page

TABLE I. C	ONTINUATION			
Category	Term	Count	P-value	Genes
MF	GO:0003823~	12	2.15E-09	IGHG1, IGHV1-69, IGLV2-14, IGKV1-17, IGHD, JCHAIN,
	antigen binding			IGKV4-1, IGLV3-25, ITGA4, IGKC, IL7R, IGHM
MF	GO:0008009~	8	2.61E-07	CCL13, CXCL13, CXCL9, CCL19, CCL5, CXCL11,
	chemokine activity			CCL18, CXCL10
MF	GO:0001077~	13	1.53E-06	EGR1, CEBPD, NR4A2, NR4A1, LEF1, FOSB, SOX9,
	transcriptional			JUNB, FOS, JUN, IRF4, MYC, KLF4
	activator activity, RNA			
	polymerase II core			
	promoter proximal			
	region sequence-			
	-specific binding			
MF	GO:0048248~CXCR3	4	7.06E-06	CXCL13, CXCL9, CXCL11, CXCL10
	chemokine receptor			
	binding			
MF	GO:0008201~heparin	10	1.46E-05	LPL, SFRP1, CXCL13, HBEGF, ADAMTS1, CXCL11,
	binding			PLA2G2D, COL5A1, CXCL10, CYR61
KEGG	hsa04060:Cytokine-	17	7.17E-08	EGFR, IL6, IL21R, CXCL9, TNFRSF17, CCL19, CXCL11,
	cytokine receptor			CCL5, IL7R, CXCL10, CCL13, CCR7, CCR5, CXCL13,
	interaction			CCR2, IL2RG, CD27
KEGG	hsa04062:Chemokine	13	7.88E-06	CCR7, CCL13, CCR5, NCF1, CXCL13, CCR2, CXCL9,
	signaling pathway			CCL19, CXCL11, CCL5, STAT1, CCL18, CXCL10
KEGG	hsa04620:Toll-like	10	1.31E-05	FOS, IL6, JUN, CXCL9, CCL5, CXCL11, STAT1, TLR7,
	receptor signaling			SPP1, CXCL10
	pathway			
KEGG	hsa05321:Inflammatory	8	2.44E-05	HLA-DQB1, IL6, JUN, IL21R, HLA-DRB4, IL2RG,
	bowel disease (IBD)			HLA-DPA1, STAT1
KEGG	hsa05323:Rheumatoid	9	2.47E-05	HLA-DQB1, FOS, IL6, JUN, HLA-DRB4, HLA-DPA1, CCL5,
	arthritis			MMP3, MMP1

Note: BP, biological process; CC, cell component; MF, molecular function; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes

tly enriched in pathways including chemokine signaling pathway, tumor necrosis factor (TNF) signaling pathway, rheumatoid arthritis, Epstein-Barr virus infection and cytokine-cytokine receptor interaction (Table III).

DISCUSSION

Many studies have been performed to disclose the causes and underlying mechanisms of rheumatoid arthritis formation and progression during the past decades. RA incidence appeared relatively stable, and mortality was substantially higher in RA versus the general population¹⁷. Our study integrated four cohorts profile datasets from different groups, utilized bioinformatics methods to deeply analyze these datasets, and identified 229 commonly changed DEGs. The number of upregulated genes was significantly higher than the down--regulated genes (145 vs 84). Moreover, total of 103 consistently expressed genes were identified between the 229 DEGs and the three datasets, including 74 up--regulated genes and 29 down-regulated genes. In the hierarchical clustering analysis, we found six GEO samples (GSM) of RA (GSM1339624, GSM1337324, GSM1339620, GSM1337315, GSM303366, and GSM302882) were not classified as the RA group. Since these patients were diagnosed as RA patients there must be a reason for the lack of clustering such as joint localization^{18,19}, different disease stages and disease activi-

FIGURE 4. Differentially expressed genes protein-protein interaction (PPI) network was constructed and visualized using Cytoscape software

ty or disease subtypes²⁰⁻²². Moreover, RA pathogenesis in different individuals may depend to a lesser extent on common alterations of the expression of specific key genes, and rather on individual-specific alterations of different genes⁸.

There is an increasing interest in searching for networks of genes, instead of single genes, contributing to the etiology of complex diseases, since changes in biological characteristics require coordinate variation in expression of gene sets. Enrichment analysis tools, which estimate overrepresentation of particular gene categories or pathways in a gene list, are a useful approach in this direction²³. In order to better understand the interactions of DEGs, we further carried out GO and KEGG pathway analysis. It was showed that DEGs were significantly enriched in biological processes including immune response, inflammatory response, chemokine-mediated signaling pathway, response to lipopolysaccharide and cellular response to tumor necrosis factor. Development and progression of RA is closely related to the abnormal function of immune system, which results in inflammatory response in the joint capsule²⁴. Moreover, the enriched KEGG pathways of DEGs included cytokine-cytokine receptor interaction, chemokine signaling pathway, toll-like receptor signaling pathway, and inflammatory bowel disease. Genetic and environmental factors are considered among the important risk factors in RA^{2,25}. The chemokine signaling pathway and toll-like receptor signaling pathway have been highly focused on RA²⁶.

Gene symbol	Gene title	Degree
IL6	interleukin 6	58
JUN	jun proto-oncogene	40
FOS	FBJ murine osteosarcoma viral oncogene homolog	38
PTPRC	protein tyrosine phosphatase, receptor type, C	33
МҮС	v-myc avian myelocytomatosis viral oncogene homolog	33
CCL5	chemokine (C-C motif) ligand 5	30
CCR5	chemokine (C-C motif) receptor 5	27
CCR7	chemokine (C-C motif) receptor 7	26
STAT1	signal transducer and activator of transcription 1	25
EGFR	epidermal growth factor receptor	25
CD2	CD2 molecule	25
LCK	LCK proto-oncogene, Src family tyrosine kinase	25
PTGS2	prostaglandin-endoperoxide synthase 2	22
EGR1	early growth response 1	22
ATF3	activating transcription factor 3	21
CXCL9	chemokine (C-X-C motif) ligand 9	19
CXCL10	chemokine (C-X-C motif) ligand 10	19
IL7R	interleukin 7 receptor	18
DUSP1	dual specificity phosphatase 1	17
CD27	CD27 molecule	17

FIGURE 5. Modular analysis of differentially expressed genes protein–protein interaction network. (A) Module-1; (B) Module-2. Middle node as for the seed node in the module by module analysis. Red nodes represent up-regulated genes and baby blue nodes represent down-regulated genes in rheumatoid arthritis compared to the normal samples

Category	Term	Count	P-value	Genes
	hsa04062:Chemokine signaling	10	9.4E-09	CCL13, CCR7, CCR5, CXCL13, CCR2,
	pathway			CXCL9, CCL19, CXCL11, CCL18, CXCL10
Cluster 1	hsa04060:Cytokine-cytokine receptor	9	0.0016	CCL13, CCR7, CCR5, CXCL13, CCR2,
Cluster-1	interaction			CXCL9, CCL19,CXCL11, CXCL10
-	hsa04620:Toll-like receptor	7	0.0038	FOS, JUN, CXCL9, CXCL11, TLR7,
	signaling pathway			SPP1, CXCL10
	hsa04668:TNF signaling pathway	5	0.0061	FOS, SOCS3, JUN, MMP3, CXCL10
	hsa04060:Cytokine-cytokine	4	0.0049	EGFR, CCL5, IL7R, CD27
Cluster-2	receptor interaction			
	hsa04012:ErbB signaling pathway	3	0.0080	EGFR, HBEGF, MYC

Note: KEGG: Kyoto Encyclopedia of Genes and Genomes, P<0.01

It was reported that the majority of the identified pathways in RA compared with normal people are involved in the regulation of inflammation, cytokine-cytokine receptor interactions, and so on⁸.

IL6 and JUN were selected with the high connective degree after analyzing the hub genes from the DEGs PPI network. This is consistent with the previous studies^{27,28}. Many activated cell types contribute to the development and progression of RA. Monocytes, macrophages, dendritic cells, T and B cells, endothelial cells, and synovial fibroblasts are major components of the pannus and contribute to the pathogenesis of rheumatoid arthritis and other inflammatory conditions²⁹⁻³¹. IL6 was first described as a cytokine inducing B lymphocytes to produce immunoglobulin or stimulating hepatocytes and it was named B-stimulating factor-2 or hepatocyte growth factor. IL6 is an inflammatory cytokine involved in various biologic processes, including dysimmune diseases and cancers^{32,33}. Increased production of IL-6 is associated with rheumatoid arthritis that acts through its receptor, interleukin 6 receptor (IL-6R). Various single nucleotide polymorphisms in the IL-6R gene conferring susceptibility to RA have been identified in various populations^{34,35}. A positive correlation was evident between the disease activity score (28) and IL6 levels in patients with rheumatoid arthritis³⁶. Tocilizumab is an immunosuppressive drug against the IL-6R and used for the treatment of moderate to severe rheumatoid arthritis, applied in combination with methotrexate. The drug slows down the activity of the disease and can improve physical function of patients³⁷. Abatacept targeted T cells and rituximab targeted B cells, are

approved for use in RA patients after TNF inhibitor have failed³⁸. JUN proto-oncogene is a normal gene that could become an oncogene due to mutations or increased expression. Proto-oncogenes code for proteins that help to regulate cell growth and differentiation. Proto-oncogenes are often involved in signal transduction and execution of mitogenic signals, usually through their protein products³⁹. Both JUN and its dimerization partners in activator protein 1 (AP-1) formation are subject to regulation by diverse extracellular stimuli, which include peptide growth factors, proinflammatory cytokines, oxidative and other forms of cellular stress⁴⁰. AP-1 dependent genes, e.g., matrixmetalloproteinase, are involved in the pathogenesis of RA. Therefore, the transcriptions factor AP-1 and its subunits, proteins of the JUN and FOS proto-oncogene families, are interesting targets for analysis in RA⁴¹. Similarly, JUN and MYC were also identified as hub gene in the study from other laboratories⁴². Signal transducer and activator of transcription 1 (STAT1) was also identified as hub genes in our study. Signal transducer and activator of transcriptions (STATs) and Janus kinases (JAKs) are critical in cytokine intracellular signalling and strongly involved in many inflammatory disease. JAK activation phosphorylates the STAT inducing the expression of many genes that several studies have shown to be crucial in the pathogenesis of RA^{43,44}. Many cytokines involved in the pathogenesis of autoimmune and inflammatory diseases use JAKs and STATs to transduce intracellular signals. Then, small-molecule inhibitors of JAKs have gained traction as safe and efficacious options for the treatment of inflammation-driven pathologies such as rheumatoid

arthritis⁴⁵. For example, tofacitinib primarily inhibits Janus kinase 1 (JAK-1) and Janus kinase 3 (JAK-3) for the treatment of moderate to severe RA⁴⁶. Baricitinib is a new promising therapy for RA by selectively and reversibly inhibiting JAK-1 and Janus kinase 2 (JAK-2)⁴⁷. Therefore, JAK-STAT signaling blockade may be a key target therapy for RA.

Module analysis of the PPI network revealed that the development of RA was associated with chemokine signaling pathway, cytokine-cytokine receptor interaction, toll-like receptor signaling pathway, TNF signaling pathway, rheumatoid arthritis, and so on. The first module or cluster consisting of 27 genes, including toll--like receptor 7 (TLT7), C-X-C Motif Chemokine Ligend (CXCL) family members (CXCL9, CXCL10, CXCL11, CXCL13), beta chemokine receptors (CCR2, CCR5, CCR7) were listed at the top of the most changed genes, and their biological functions are mainly involved in cell inflammation response. It was interesting that TLT7 is identified as the seed node in the cluster-1. TLR7 is an endosomal innate immune sensor capable of detecting single-stranded ribonucleic acid⁴⁸. TLR7-mediated induction of type I interferon and other inflammatory cytokine production is important in antiviral immune responses. Altered TLR7 expression levels are implicated in various autoimmune disorders, indicating a key role for this receptor in modulating inflammation. Moreover, triggering receptor expressed on myeloid cells like 4, a protein associated with antigen presentation and apoptosis in immune cells, has been implicated in the amplification of TLR7 signaling⁴⁹. There is a growing interest in the targeting of toll-like receptors (TLRs) for the prevention and treatment of cancer, rheumatoid arthritis, inflammatory bowel disease and systemic lupus erythematosus (SLE). Several new compounds are now undergoing preclinical and clinical evaluation, with a particular focus on TLR7 and TLR9 activators as adjuvants in infection and cancer, and inhibitors of TLR2, TLR4, TLR7 and TLR9 for the treatment of sepsis and inflammatory diseases⁵⁰. Earlier investigations have highlighted the importance of TLR2 and TLR4 function in RA pathogenesis; however more recent studies have also revealed a significant impact of TLR7 in RA pathology⁵¹. TNF signaling pathway included three hub genes (JUN, FOS, CXCL10) in the Cluster-1. Previous report focused on TNF-inhibitors to treat RA, which showed to significantly improve clinical and functional scores⁵². Moreover, the chemokine signaling pathway included 10 genes, and four is part of the hub genes

(Table II-III). Similarly, cytokine-cytokine receptor interaction also included 9 genes of it (Table III). The RA synovial compartment contains several ligands for CCR1, CCR2, and CCR5 as well as other chemokines and receptors involved in monocyte recruitment to the site of inflammation. Some researchers concentrated on inhibiting chemokines and its receptors to treat RA. CCR5 antagonists failed to demonstrate clinical efficacy, CCR5 appeared not to be a desirable target in RA treatment⁵³. CCR2 and CCR5 were not critical for the migration of monocytes towards the synovial compartment in RA. In contrast, blockade of CCR1 may be effective⁵⁴. Chemokine (C-C motif) ligand 5 (CCL5) induced collagen degradation by activating Matrix metalloproteinase 1 (MMP-1) and matrix metalloproteinase 13 (MMP-13) expression by partly utilizing heparan sulfate proteoglycans in human rheumatoid arthritis synovial fibroblasts⁵⁵. Encouragingly, combined blockade of TNF alpha and interleukin 17 (IL17) was more effective than single blockade in inhibiting cytokine, chemokine, and matrix enzyme responses from human mesenchymal cells and in blocking tissue destruction associated with RA, and additionally showed a positive impact on rebalance of bone homeostasis⁵⁶. Bispecific anti-TNF alpha/IL-17 antibodies may have superior efficacy in the treatment of RA.

The second module consisting of 13 genes, including growth arrest and DNA-damage-inducible beta (GADD45B) and epidermal growth factor receptor (EGFR) were listed at the top of the most changed genes, and their biological functions are mainly involved in regulation of cell growth and apoptosis. GADD45B is identified as the seed node in the cluster-2. GADD45B is a member of a group of genes whose transcript levels are increased following stressful growth arrest conditions and treatment with DNA-damaging agents. The function of these genes or their protein products is involved in the regulation of growth and apoptosis. These genes are regulated by different mechanisms, but they are often coordinately expressed and can function cooperatively in inhibiting cell growth. Previous study has suggested a novel mechanism by which specific cytokines in the RA synovial fluid elevate GADD45B expression in local Th1 cells and subsequently leading to the enhanced T cell survival⁵⁷. Deficient GADD45B expression in RA can contribute to activation of JNK, exacerbate clinical arthritis, and augment joint destruction. This process can be mitigated by enhancing GADD45B expression or by inhibiting the activity of JNK or its upstream regulator, dual specificity mitogen-activated protein kinase kinase 7 (MKK-7)⁵⁸. GADD45B immunostaining was significantly higher in the sub-group of RA patients with poor-response to methotrexate therapy²⁰. It is reasonable to believe GADD45B are probably involved in RA pathogenesis. Activation of EGFR signaling is responsible for synovial fibroblast proliferation in RA. Furthermore, in addition to its role in proliferation, EGFR and its ligands can induce cytokine production of synovial fibroblasts during the pathogenesis of RA. Agents targeted EGFR have yielded promising results in animal experiments involving RA, pharmacologic modulations targeting EGFR, or its ligands may give rise to new therapeutic approaches for RA⁵⁹. On the basis on integration of gene expression profiles, p53 was involved in the progression of RA via targeting EGFR⁴².

CONCLUSION

In conclusion, we have identified 49 mostly changed hub genes, which significant enriched in several pathways, mainly associated with cytokine-cytokine receptor interaction, chemokine signaling pathway, Tolllike receptor signaling pathway and TNF signaling pathway in RA. These findings may contribute to improve our understanding of the cause and underlying molecular events in RA, these candidate genes and pathways could be therapeutic targets for RA but must be confirmed by other studies.

CORRESPONDENCE TO Wen-Zong Lu Department of Biomedical Engineering, College of Electronic and Information Engineering Xi'an Technological University Xi'an, Shaanxi Province 710021 People's Republic of China E-mail: luwenzong@xatu.edu.cn

REFERENCES

- 1. Ferro F, Elefante E, Luciano N, Talarico R, Todoerti M. One year in review 2017: novelties in the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2017;35:721-734.
- 2. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388:2023-2038.
- Bala A, Chetia P, Dolai N, Khandelwal B, Haldar PK. Cat's whiskers flavonoid attenuated oxidative DNA damage and acute inflammation: its importance in lymphocytes of patients with rheumatoid arthritis. Inflammopharmacology. 2014;22:55-61.
- 4. Marquez A, Vidal-Bralo L, Rodriguez-Rodriguez L, et al. A combined large-scale meta-analysis identifies COG6 as a novel shared risk locus for rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis. 2017;76:286-294.

- Bala A, Mondal C, Haldar PK, Khandelwal B. Oxidative stress in inflammatory cells of patient with rheumatoid arthritis: clinical efficacy of dietary antioxidants. Inflammopharmacology. 2017; 25:595-607.
- Takeshita M, Kuno A, Suzuki K, et al. Alteration of matrix metalloproteinase-3 O-glycan structure as a biomarker for disease activity of rheumatoid arthritis. Arthritis Res Ther. 2016;18:112.
- Lu C, Xiao C, Chen G, et al. Cold and heat pattern of rheumatoid arthritis in traditional Chinese medicine: distinct molecular signatures indentified by microarray expression profiles in CD4-positive T cell. Rheumatol Int. 2012;32:61-68.
- 8. Huber R, Hummert C, Gausmann U, et al. Identification of intra-group, inter-individual, and gene-specific variances in mRNA expression profiles in the rheumatoid arthritis synovial membrane. Arthritis Res Ther. 2008;10:R98.
- 9. Woetzel D, Huber R, Kupfer P, et al. Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation. Arthritis Res Ther. 2014;16:R84.
- Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20:307-315.
- Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK. Robust hyperparmeter estimation protects against hypervariable genes and improves power to detect differential expression. Ann Appl Stat. 2016;10:946-963.
- Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882-883.
- 13. Dennis G, Jr., Sherman BT, Hosack DA, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4:P3.
- von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31:258-261.
- 15. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498-2504.
- Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4:2.
- Jean S, Hudson M, Gamache P, et al. Temporal trends in prevalence, incidence, and mortality for rheumatoid arthritis in Quebec, Canada: a population-based study. Clin Rheumatol. 2017;36: 2667-2671.
- Ai R, Hammaker D, Boyle DL, et al. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat Commun. 2016;7:11849.
- Frank-Bertoncelj M, Trenkmann M, Klein K, et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides jointspecific fibroblast functions. Nat Commun. 2017;8: 14852.
- 20. De Groof A, Ducreux J, Humby F, et al. Higher expression of TN-Falpha-induced genes in the synovium of patients with early rheumatoid arthritis correlates with disease activity, and predicts absence of response to first line therapy. Arthritis Res Ther. 2016;18:19.
- Pitzalis C, Kelly S, Humby F. New learnings on the pathophysiology of RA from synovial biopsies. Curr Opin Rheumatol. 2013;25:334-344.
- 22. Bax M, Huizinga TW, Toes RE. The pathogenic potential of au-

toreactive antibodies in rheumatoid arthritis. Semin Immunopathol. 2014;36:313-325.

- 23. Huang Q, Wu LY, Wang Y, Zhang XS. GOMA: functional enrichment analysis tool based on GO modules. Chin J Cancer. 2013;32:195-204.
- Venuturupalli S. Immune mechanisms and novel targets in rheumatoid arthritis. Immunol Allergy Clin North Am. 2017; 37:301-313.
- 25. Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46:183-196.
- Zhang M, Mu H, Lv H, et al. Integrative analysis of genomewide association studies and gene expression analysis identifies pathways associated with rheumatoid arthritis. Oncotarget. 2016;7:8580-8589.
- Zhang X, Yuan Z, Cui S. Identifying candidate genes involved in osteoarthritis through bioinformatics analysis. Clin Exp Rheumatol. 2016;34:282-290.
- Gang XK, Sun Y, Li F, et al. Identification of key genes associated with rheumatoid arthritis with bioinformatics approach. Medicine. 2017;96:e7673.
- 29. Mellado M, Martinez-Munoz L, Cascio G, Lucas P, Pablos JL, Rodriguez-Frade JM. T Cell Migration in Rheumatoid Arthritis. Front Immunol. 2015;6:384.
- Fearon U, Canavan M, Biniecka M, Veale DJ. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol. 2016;12:385-397.
- 31. Veale DJ, Orr C, Fearon U. Cellular and molecular perspectives in rheumatoid arthritis. Semin Immunopathol. 2017;39:343-354.
- Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6:a016295.
- 33. Dmitrieva OS, Shilovskiy IP, Khaitov MR, Grivennikov SI. Interleukins 1 and 6 as Main Mediators of Inflammation and Cancer. Biochemistry (Mosc). 2016;81:80-90.
- Ahmed S, Hussain S, Ammar A, Jahan S, Khaliq S, Kaul H. Interleukin 6 Receptor (IL6-R) Gene Polymorphisms Underlie Susceptibility to Rheumatoid Arthritis. Clin Lab. 2017;63:1365--1369.
- Ruiz-Larranaga O, Uribarri M, Alcaro MC, et al. Genetic variants associated with rheumatoid arthritis patients and serotypes in European populations. Clin Exp Rheumatol. 2016;34:236-241.
- 36. Tekeoglu I, Harman H, Sag S, Altindis M, Kamanli A, Nas K. Levels of serum pentraxin 3, IL-6, fetuin A and insulin in patients with rheumatoid arthritis. Cytokine. 2016;83:171-175.
- Atsumi T, Fujio K, Yamaoka K, et al. Safety and effectiveness of subcutaneous tocilizumab in patients with rheumatoid arthritis in a real-world clinical setting. Mod Rheumatol. 2017:1-21.
- Schiotis RE, Buzoianu AD, Muresanu DF, Suciu S. New pharmacological strategies in rheumatic diseases. J Med Life. 2016;9:227-234.
- 39. Todd R, Wong DT. Oncogenes. Anticancer Res. 1999;19:4729--4746.
- Wisdom R, Johnson RS, Moore C. c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J. 1999;18:188-197.
- 41. Huber R, Kunisch E, Gluck B, Egerer R, Sickinger S, Kinne RW. Comparison of conventional and real-time RT-PCR for the quantitation of jun protooncogene mRNA and analysis of junB mRNA expression in synovial membranes and isolated synovial fibroblasts from rheumatoid arthritis patients. Z Rheumatol. 2003;62:378-389.

- 42. Xu Y, Huang Y, Cai D, Liu J, Cao X. Analysis of differences in the molecular mechanism of rheumatoid arthritis and osteoarthritis based on integration of gene expression profiles. Immunol Lett. 2015;168:246-253.
- 43. Wu S, Li Y, Yao L, et al. Interleukin-35 inhibits angiogenesis through STAT1 signalling in rheumatoid synoviocytes. Clin Exp Rheumatol. 2017;36:234.
- 44. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK-STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects Drugs. 2017;77:521--546.
- Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O'Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16:843-862.
- 46. Yamanaka H, Tanaka Y, Takeuchi T, et al. Tofacitinib, an oral Janus kinase inhibitor, as monotherapy or with background methotrexate, in Japanese patients with rheumatoid arthritis: an open-label, long-term extension study. Arthritis Res Ther. 2016;18:34.
- 47. Genovese MC, Kremer J, Zamani O, et al. Baricitinib in Patients with Refractory Rheumatoid Arthritis. N Engl J Med. 2016;374:1243-1252.
- Fletcher S, Steffy K, Averett D. Masked oral prodrugs of toll-like receptor 7 agonists: a new approach for the treatment of infectious disease. Curr Opin Investig Drugs. 2006;7:702-708.
- Petes C, Odoardi N, Gee K. The Toll for Trafficking: Toll-Like Receptor 7 Delivery to the Endosome. Front Immunol. 2017; 8:1075.
- Hennessy EJ, Parker AE, O'Neill LA. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov. 2010;9:293-307.
- Elshabrawy HA, Essani AE, Szekanecz Z, Fox DA, Shahrara S. TLRs, future potential therapeutic targets for RA. Autoimmun Rev. 2017;16:103-113.
- 52. Boubouchairopoulou N, Flouri I, Drosos AA, et al. Treatment with the first TNF inhibitor in rheumatoid arthritis patients in the Hellenic Registry of Biologic Therapies improves quality of life especially in young patients with better baseline functional status. Clin Exp Rheumatol. 2016;34:999-1005.
- 53. Takeuchi T, Kameda H. What is the future of CCR5 antagonists in rheumatoid arthritis? Arthritis Res Ther. 2012;14:114.
- Lebre MC, Vergunst CE, Choi IYK, et al. Why CCR2 and CCR5 blockade failed and why CCR1 blockade might still be effective in the treatment of rheumatoid arthritis. Plos One. 2011;6: e21772.
- Agere SA, Akhtar N, Watson JM, Ahmed S. RANTES/CCL5 induces collagen degradation by activating MMP-1 and MMP-13 expression in human rheumatoid arthritis synovial fibroblasts. Front Immunol. 2017;8:1341.
- 56. Fischer JAA, Hueber AJ, Wilson S, et al. Combined inhibition of tumor necrosis factor alpha and interleukin-17 as a therapeutic opportunity in rheumatoid arthritis development and characterization of a novel bispecific antibody. Arthritis & Rheumatology. 2015;67:51-62.
- 57. Du F, Wang L, Zhang Y, et al. Role of GADD45 beta in the regulation of synovial fluid T cell apoptosis in rheumatoid arthritis. Clin Immunol. 2008;128:238-247.
- Svensson CI, Inoue T, Hammaker D, et al. Gadd45beta deficiency in rheumatoid arthritis: enhanced synovitis through JNK signaling. Arthritis Rheum. 2009;60:3229-3240.
- 59. Yuan FL, Li X, Lu WG, Sun JM, Jiang DL, Xu RS. Epidermal growth factor receptor (EGFR) as a therapeutic target in rheumatoid arthritis. Clin Rheumatol. 2013;32:289-292.

Como	Care Title	la «EC	D. Volue
		10grC	P. value
IGHM	immunoglobulin heavy constant mu	3.79037	3.40817E-17
IGKVI-17	immunoglobulin kappa variable 1-17	3.54808	2.12801E-14
CXCLIS	chemokine (C-X-C motil) ligand 13	3.42935	4.0109E-15
IGKC	immunoglobulin kappa constant	3.32314	8.04864E-13
POUZAFI	POU class 2 associating factor 1	3.03310	3.4/536E-13
IGKV4-1	immunoglobulin kappa variable 4-1	2.84279	5./3483E-13
MMP1	matrix metallopeptidase 1	2.83171	2.03581E-07
IGKC	immunoglobulin kappa constant	2.80131	2.40114E-12
IGHM	immunoglobulin heavy constant mu	2.80030	5.54553E-12
IGKV1D-13	immunoglobulin kappa variable 1D-13	2.75749	1.06203E-14
IGKC	immunoglobulin kappa constant	2.60157	1.06282E-14
JCHAIN	joining chain of multimeric IgA and IgM	2.58630	8.56313E-12
IGKV10R2-108	immunoglobulin kappa variable 1/OR2-108 (non-functional)	2.54490	1.10701E-13
IGLJ3	immunoglobulin lambda joining 3	2.52939	2.66384E-13
FOSB	FBJ murine osteosarcoma viral oncogene homolog B	-2.52522	2.16049E-10
CXCL9	chemokine (C-X-C motif) ligand 9	2.50734	6.00129E-14
IGLV2-14	immunoglobulin lambda variable 2-14	2.44207	7.77896E-13
IGLV3-10	immunoglobulin lambda variable 3-10	2.36913	2.09075E-11
IGHV1-69	immunoglobulin heavy variable 1-69	2.31449	3.73935E-12
IGLJ3	immunoglobulin lambda joining 3	2.30430	1.20106E-12
IGLV@	immunoglobulin lambda variable cluster	2.25398	2.42369E-12
CCL18	chemokine (C-C motif) ligand 18	2.25206	6.64655E-12
IGHD	immunoglobulin heavy constant delta	2.24095	1.0078E-11
RPS4Y1	ribosomal protein S4, Y-linked 1	-2.22014	1.93619E-05
IGLJ3	immunoglobulin lambda joining 3	2.19847	1.70408E-12
ADAMDEC1	ADAM-like, decysin 1	2.18802	6.22369E-13
SLAMF8	SLAM family member 8	2.14532	1.24076E-14
DDX3Y	DEAD (Asp-Glu-Ala-Asp) box helicase 3, Y-linked	-2.09899	2.51843E-06
EGR1	early growth response 1	-2.08191	4.37873E-12
CXCL10	chemokine (C-X-C motif) ligand 10	2.00281	2.683E-14
IGLV3-25	immunoglobulin lambda variable 3-25	1.98090	1.27926E-11
GSN	gelsolin	-1.96302	7.01793E-14
LRRC15	leucine rich repeat containing 15	1.95529	3.44061E-14
IUN	jun proto-oncogene	-1.92380	3.90605E-12
APOD	apolipoprotein D	-1.89568	1.71088E-06
TNFRSF17	tumor necrosis factor receptor superfamily, member 17	1.84507	2.03149E-09
ADH1B	alcohol dehydrogenase 1B (class I), beta polypeptide	-1.79312	0.001194373
CCL18	chemokine (C-C motif) ligand 18	1.76918	3.25046E-11
MXRA5	matrix-remodelling associated 5	1.76787	1.04619E-09
ADH1B	alcohol dehydrogenase 1B (class I) beta polypeptide	-1 74572	0.001195825
CD52	CD52 molecule	1.71635	2.17128F-10
XIST	X inactive specific transcript (non-protein coding)	1 70152	6 78346F-05
AIM2	absent in melanoma 2	1.67030	1 95329F-15
NR4A2	nuclear recentor subfamily 4 group 4 member 2	-1 66550	3 40386F 00
PI XNC1	nuclear receptor subtaining 7, group A, member 2	1 66340	7 10577F 13
NEIL 3	nuclear factor interleukin 3 regulated	1.00379	1 136425 12
	interear racior, interretarin 5 regulated	-1.001JT	1,100 (20-12

SUPPLEMENTARY FILE TABLE I. IDENTIFIED 229 COMMONLY CHANGED DIFFERENTIALLY EXPRESSED GENES

Gene	Gene Title	logFC	P. Value
IGHG1	immunoglobulin heavy constant gamma 1 (G1m marker)	1.64496	2.85142E-10
EIF4A1	eukaryotic translation initiation factor 4A1	-1.64414	4.08629E-11
FOS	FBJ murine osteosarcoma viral oncogene homolog	-1.64125	2.99621E-06
GADD45B	growth arrest and DNA-damage-inducible, beta	-1.63815	1.80263E-12
DUSP1	dual specificity phosphatase 1	-1.62714	4.27648E-11
SEL1L3	sel-1 suppressor of lin-12-like 3 (C. elegans)	1.60942	1.8277E-14
IGK	immunoglobulin kappa locus	1.60537	2.55067E-09
EIF1	eukaryotic translation initiation factor 1	-1.59734	1.02638E-08
SKAP2	src kinase associated phosphoprotein 2	1.59613	8.77389E-10
NR4A2	nuclear receptor subfamily 4, group A, member 2	-1.58119	5.44362E-09
ZBTB16	zinc finger and BTB domain containing 16	-1.57686	1.22926E-06
IGLL3P	immunoglobulin lambda-like polypeptide 3, pseudogene	1.57129	1.40164E-13
CYR61	cysteine-rich, angiogenic inducer, 61	-1.56394	1.32864E-09
MAFF	v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog	F -1.54699	6.81405E-08
SEL1L3	sel-1 suppressor of lin-12-like 3 (C. elegans)	1.54513	1.6732E-13
C7	complement component 7	-1.53231	1.51637E-09
TPD52	tumor protein D52	1.52320	4.87719E-14
NR4A2	nuclear receptor subfamily 4, group A, member 2	-1.50039	5.0075E-09
GBP1	guanylate binding protein 1, interferon-inducible	1.49320	9.4905E-12
ERAP2	endoplasmic reticulum aminopeptidase 2	1.48996	1.21875E-07
COL1A1	collagen, type I, alpha 1	1.48436	3.07621E-06
ATF3	activating transcription factor 3	-1.46809	2.0212E-07
CD27	CD27 molecule	1.46376	4.82384E-12
ADAM28	ADAM metallopeptidase domain 28	1.45884	1.31965E-11
MS4A1	membrane-spanning 4-domains, subfamily A, member 1	1.45716	2.15158E-07
LCK	LCK proto-oncogene, Src family tyrosine kinase	1.45708	3.28282E-11
IGHV1-69	immunoglobulin heavy variable 1-69	1.45394	1.16892E-10
CCL5	chemokine (C-C motif) ligand 5	1.45338	1.41419E-12
EGR1	early growth response 1	-1.44956	6.52987E-11
TPD52	tumor protein D52	1.44506	2.13562E-13
HLA-DRB4	major histocompatibility complex, class II, DR beta 4	1.44257	0.000781705
KLF4	Kruppel-like factor 4 (gut)	-1.43653	1.85403E-08
PLPP3	phospholipid phosphatase 3	-1.43537	3.77057E-13
BLNK	B-cell linker	1.42913	9.13386E-13
NCF1	neutrophil cytosolic factor 1	1.42861	9.26941E-10
JUNB	jun B proto-oncogene	-1.42808	4.82279E-13
FLRT2	fibronectin leucine rich transmembrane protein 2	1.42767	6.36697E-11
GZMK	granzyme K	1.41918	1.0105E-10
HLA-DQB1	major histocompatibility complex, class II, DQ beta 1	1.41738	9.15386E-10
MS4A1	membrane-spanning 4-domains, subfamily A, member 1	1.40354	1.8884E-07
NEAT1	nuclear paraspeckle assembly transcript 1 (non-protein coding)	-1.40096	5.37953E-08
GADD45B	growth arrest and DNA-damage-inducible, beta	-1.39250	3.46637E-11
SLC39A8	solute carrier family 39 (zinc transporter), member 8	1.38781	9.69833E-10
IGK	immunoglobulin kappa locus	1.38602	4.87683E-09
XIST	X inactive specific transcript (non-protein coding)	1.38056	0.000234691
COLIAI	collagen, type I, alpha 1	1.37494	4.04885E-05
	_ /* *	con	tinues on the next page

JOIT LLILLING			
Gene	Gene Title	logFC	P. Value
CD52	CD52 molecule	1.37486	3.48155E-11
CCL5	chemokine (C-C motif) ligand 5	1.37027	7.73558E-11
IGHM	immunoglobulin heavy constant mu	1.36835	1.41335E-08
FABP4	fatty acid binding protein 4, adipocyte	-1.36683	0.000556824
GBP1	guanylate binding protein 1, interferon-inducible	1.36620	1.39096E-11
SDC1	syndecan 1	1.35850	1.41547E-11
CD3D	CD3d molecule, delta (CD3-TCR complex)	1.35238	2.61161E-10
CYP4B1	cytochrome P450, family 4, subfamily B, polypeptide 1	-1.34545	0.000672344
GUSBP11	glucuronidase, beta pseudogene 11	1.34538	1.43182E-09
HLA-DPA1	major histocompatibility complex, class II, DP alpha 1	1.34432	2.1606E-09
SOCS3	suppressor of cytokine signaling 3	-1.33484	1.16668E-10
SLC19A2	solute carrier family 19 (thiamine transporter), member 2	-1.33060	5.96653E-08
SDC1	syndecan 1	1.32730	7.79801E-11
GZMA	granzyme A	1.32518	1.0315E-10
IL32	interleukin 32	1.31860	1.1976E-12
SFRP1	secreted frizzled-related protein 1	-1.30861	2.69121E-10
CCL13	chemokine (C-C motif) ligand 13	1.30591	4.28168E-07
PTGS2	prostaglandin-endoperoxide synthase 2 (prostaglandin G/H	-1.30127	1.32375E-07
	synthase and cyclooxygenase)		
CCR2	chemokine (C-C motif) recentor 2	1 30016	6 15755F-11
	cytohesin 1 interacting protein	1 29969	3 67021F-13
CYR61	cysteine-rich angiogenic inducer 61	-1 29621	1.03304E-07
U 2RG	interleukin 2 recentor gamma	1 29348	1.83307E-01
MAQA	monoamine oxidase A	-1 29126	2 71252E-05
FKBP5	FK506 hinding protein 5	-1 28534	3 68818F-09
	lysocomal-associated membrane protein 3	1.20331	2 11817E-07
PTPRC	protein tyrosine phosphatase, receptor type (1.27513	7.09761E-12
TPD52	tumor protein D52	1.26652	1.00701E 12
$\frac{11052}{CD2}$	CD2 molecule	1.26328	4.01630E-11
MMP3	matrix metallonentidace 3	1.26326	0.002130295
FKBP11	FK506 hinding protein 11	1.25200	8 11804F 00
	nrotein turosine phosphatase receptor tune (1.25687	1 23421E 10
	hvaluronan synthase 1	1.25007	1.23721E-10
ND441	nuclear recenter subfamily 4, group 4, member 1	1 25306	4 11625E 00
	secreted phoephoprotein 1	1 24067	0.000473153
	Kruppel like factor 0	1.24907	1 15373E 00
TDAC	T coll recentor clube constant	-1.2+620	1.10570E-09
I KAC	1-cen receptor appia constant	1.24020	1.19339E-10
GADD43D	growth arrest and DNA-damage-inducible, beta	-1.24091	1.40300E-11
RASGRP1	KAS guaryi releasing protein 1 (calcium and DAG-regulated)	1.23704	1.14796E-09
	linemetein lineee	1.20079	4.40049E-10
	lipoprotein lipase	-1.23117	0.000661638
IL/K		1.23095	1.08925E-07
rSMB9	proteasome subunit beta 9	1.23060	5.59139E-16
PCKI	pnosphoenolpyruvate carboxykinase 1 (soluble)	-1.23043	0.000974441
INTRK2	neurotrophic tyrosine kinase, receptor, type 2	-1.22624	1.04493E-06
SFRPI	secreted trizzled-related protein 1	-1.22193	1.15832E-11
		con	tinues on the next page

Gene	Gene Title	logFC	P. Value
EGFR	epidermal growth factor receptor	-1.21176	4.60672E-12
MZB1	marginal zone B and B1 cell-specific protein	1.18883	3.63884E-08
ABCA8	ATP binding cassette subfamily A member 8	-1.18698	3.35654E-05
SLC39A8	solute carrier family 39 (zinc transporter), member 8	1.18603	3.98197E-08
SLAMF8	SLAM family member 8	1.18572	3.89028E-13
SEMA4D	sema domain, immunoglobulin domain (Ig), transmembrane	1.18346	2.56735E-11
	domain (TM) and short cytoplasmic domain, (semaphorin) 4D		
NKG7	natural killer cell granule protein 7	1.18286	2.93599E-11
SFRP1	secreted frizzled-related protein 1	-1.17324	5.8595E-09
CXCL11	chemokine (C-X-C motif) ligand 11	1.16545	1.11702E-07
BTN3A2	butyrophilin, subfamily 3, member A2	1.16439	8.46517E-08
GPRC5A	G protein-coupled receptor, class C, group 5, member A	-1.16401	7.70006E-09
PRKCB	protein kinase C, beta	1.16385	1.93576E-11
IL6	interleukin 6	-1.16337	0.000300705
APOBEC3G	apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like	3G1.16188	1.69685E-12
MREG	melanoregulin	1.15386	3.45361E-14
CXCL11	chemokine (C-X-C motif) ligand 11	1.15249	1.41005E-07
NTRK2	neurotrophic tyrosine kinase, receptor, type 2	-1.15246	1.97168E-08
IL21R	interleukin 21 receptor	1.15196	1.1175E-11
ZFP36L2	ZFP36 ring finger protein-like 2	-1.14723	1.27567E-08
STAT1	signal transducer and activator of transcription 1	1.14302	3.71731E-09
ITGA4	integrin alpha 4	1.14277	9.65725E-13
LGALS2	lectin, galactoside-binding, soluble, 2	1.14270	1.08754E-07
TXNIP	thioredoxin interacting protein	-1.14259	1.18547E-06
GDF15	growth differentiation factor 15	-1.14225	3.18477E-07
RGS16	regulator of G-protein signaling 16	-1.13658	3.60513E-07
EDNRB	endothelin receptor type B	-1.13280	2.44157E-07
ACACB	acetyl-CoA carboxylase beta	-1.12266	4.15701E-06
IER2	immediate early response 2	-1.12217	2.85335E-10
ZFP36	ZFP36 ring finger protein	-1.11590	3.13697E-10
HLA-DQB1	major histocompatibility complex, class II, DQ beta 1	1.11336	7.37695E-06
FCMR	Fc fragment of IgM receptor	1.11065	2.7113E-08
LOXL1	lysyl oxidase-like 1	1.10364	8.96737E-08
BTN3A3	butyrophilin, subfamily 3, member A3	1.09959	2.60965E-11
FCGR1B	Fc fragment of IgG, high affinity Ib, receptor (CD64)	1.09934	1.672E-06
KLF4	Kruppel-like factor 4 (gut)	-1.09611	8.51904E-09
МҮС	v-myc avian myelocytomatosis viral oncogene homolog	-1.09237	5.29361E-08
TRAF3IP3	TRAF3 interacting protein 3	1.09201	7.41785E-10
CCR7	chemokine (C-C motif) receptor 7	1.09028	2.72631E-07
TMEM259	transmembrane protein 259	-1.08688	7.59164E-10
AIM1	absent in melanoma 1	1.08684	1.0799E-16
LEF1	lymphoid enhancer-binding factor 1	1.08486	9.72693E-08
RRM2	ribonucleotide reductase M2	1.08396	6.86025E-10
COL1A2	collagen, type I, alpha 2	1.08188	3.27941E-05
CCL19	chemokine (C-C motif) ligand 19	1.07969	0.000157238
C10orf10	chromosome 10 open reading frame 10	-1.07895	7.23965E-06
		con	tinues on the next page

Gene	Gene Title	logFC	P. Value
TRAC	T-cell receptor alpha constant	1.07766	2.4944E-08
RGS16	regulator of G-protein signaling 16	-1.07765	1.83779E-07
ADM	adrenomedullin	-1.06997	4.41635E-07
6-Sep	septin 6	1.06620	2.14515E-09
SRRM2	serine/arginine repetitive matrix 2	-1.06615	1.0144E-09
CCR5	chemokine (C-C motif) receptor 5 (gene/pseudogene)	1.05497	9.65202E-14
ACACB	acetyl-CoA carboxylase beta	-1.05348	3.9297E-06
STAT1	signal transducer and activator of transcription 1	1.05271	5.39006E-12
IRF4	interferon regulatory factor 4	1.05067	1.61555E-09
TLR7	toll-like receptor 7	1.04917	1.37634E-08
LAMA2	laminin, alpha 2	-1.04766	3.23459E-05
COL6A1	collagen, type VI, alpha 1	-1.04679	1.22401E-05
COL5A1	collagen, type V, alpha 1	1.04667	7.95563E-06
GABARAPL1	GABA(A) receptor-associated protein like 1	-1.04483	3.85938E-16
FKBP11	FK506 binding protein 11	1.03875	3.29947E-07
JUN	jun proto-oncogene	-1.03810	3.01712E-06
GAP43	growth associated protein 43	1.03732	1.20917E-09
FCGR2B	Fc fragment of IgG, low affinity IIb, receptor (CD32)	1.03445	9.71398E-10
CORO1A	coronin, actin binding protein, 1A	1.03370	1.01189E-07
JUN	jun proto-oncogene	-1.03265	1.29134E-09
ADAMTS1	ADAM metallopeptidase with thrombospondin type 1 motif 1	-1.03221	8.42819E-08
CD38	CD38 molecule	1.03153	7.6747E-10
UCP2	uncoupling protein 2 (mitochondrial, proton carrier)	1.02995	2.60854E-12
HLA-DQB1	major histocompatibility complex, class II, DQ beta 1	1.02966	2.08442E-07
PLA2G2D	phospholipase A2, group IID	1.02914	8.69083E-10
PRKCB	protein kinase C, beta	1.02786	1.20628E-08
KIAA0125	KIAA0125	1.02667	1.05264E-07
HLA-DQB1	major histocompatibility complex, class II, DQ beta 1	1.02658	4.37368E-08
HBEGF	heparin-binding EGF-like growth factor	-1.02295	5.69213E-06
IL27RA	interleukin 27 receptor, alpha	1.02008	4.67763E-12
SH2D1A	SH2 domain containing 1A	1.01810	4.24267E-10
EFNB2	ephrin-B2	-1.01714	4.01051E-10
RTN1	reticulon 1	1.01618	7.87927E-13
GIMAP6	GTPase, IMAP family member 6	1.01568	4.32297E-09
GPX3	glutathione peroxidase 3	-1.01444	4.10754E-07
RRM2	ribonucleotide reductase M2	1.01389	1.59469E-09
ASPN	asporin	1.01285	3.07941E-05
STAT1	signal transducer and activator of transcription 1	1.01134	2.78174E-14
COL5A1	collagen, type V, alpha 1	1.01122	1.65935E-05
EDNRB	endothelin receptor type B	-1.01027	2.50944E-10
SOX9	SRY box 9	-1.00907	2.77275E-10
BHLHE40	basic helix-loop-helix family, member e40	-1.00792	1.05421E-06
LTBP4	latent transforming growth factor beta binding protein 4	-1.00713	1.38558E-09
VOPP1	vesicular, overexpressed in cancer, prosurvival protein 1	1.00709	1.79056E-15
ANGPTL7	angiopoietin like 7	-1.00675	0.000706608
EDNRB	endothelin receptor type B	-1.00250	5.5363E-11
CEBPD	CCAAT/enhancer binding protein (C/FBP) delta	-1.00211	5 34785E-07

Gene symbol	Gene title
IGHM	immunoglobulin heavy constant mu
IGKV1-17	immunoglobulin kappa variable 1-17
CXCL13	chemokine (C-X-C motif) ligand 13
IGKC	immunoglobulin kappa constant
POU2AF1	POU class 2 associating factor 1
IGKV4-1	immunoglobulin kappa variable 4-1
MMP1	matrix metallopeptidase 1
JCHAIN	joining chain of multimeric IgA and IgM
IGLJ3	immunoglobulin lambda joining 3
FOSB	FBJ murine osteosarcoma viral oncogene homolog B
CXCL9	chemokine (C-X-C motif) ligand 9
IGLV2-14	immunoglobulin lambda variable 2-14
IGHV1-69	immunoglobulin heavy variable 1-69
IGLJ3	immunoglobulin lambda joining 3
IGLV@	immunoglobulin lambda variable cluster
CCL18	chemokine (C-C motif) ligand 18
IGHD	immunoglobulin heavy constant delta
RPS4Y1	ribosomal protein S4, Y-linked 1
IGLJ3	immunoglobulin lambda joining 3
ADAMDEC1	ADAM-like, decysin 1
DDX3Y	DEAD (Asp-Glu-Ala-Asp) box helicase 3, Y-linked
EGR1	early growth response 1
CXCL10	chemokine (C-X-C motif) ligand 10
IGLV3-25	immunoglobulin lambda variable 3-25
GSN	gelsolin
LRRC15	leucine rich repeat containing 15
JUN	jun proto-oncogene
APOD	apolipoprotein D
TNFRSF17	tumor necrosis factor receptor superfamily, member 17
ADH1B	alcohol dehydrogenase 1B (class I), beta polypeptide
CCL18	chemokine (C-C motif) ligand 18
MXRA5	matrix-remodelling associated 5
ADH1B	alcohol dehydrogenase 1B (class I), beta polypeptide
CD52	CD52 molecule
XIST	X inactive specific transcript (non-protein coding)
AIM2	absent in melanoma 2
NR4A2	nuclear receptor subfamily 4, group A, member 2
PLXNC1	plexin C1
NFIL3	nuclear factor, interleukin 3 regulated
IGHG1	immunoglobulin heavy constant gamma 1
EIF4A1	eukaryotic translation initiation factor 4A1
FOS	finkel-biskis-jinkins murine osteosarcoma viral oncogene homolog
GADD45B	growth arrest and deoxyribonucleic-acid-damage-inducible, beta
DUSP1	dual specificity phosphatase 1
SEL1L3	sel-1 suppressor of lin-12-like 3 (C. elegans)
IGK	immunoglobulin kappa locus
	continues on the next page

SUPPLEMENTARY MATERIALS. ANNOTATION OF GENE SYMBOL IN FIGURES AND TABLES

Gene symbol	Gene title
EIF1	eukaryotic translation initiation factor 1
SKAP2	src kinase associated phosphoprotein 2
NR4A2	nuclear receptor subfamily 4, group A, member 2
ZBTB16	zinc finger and BTB domain containing 16
IGLL3P	immunoglobulin lambda-like polypeptide 3, pseudogene
CYR61	cysteine-rich, angiogenic inducer, 61
MAFF	v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog F
SEL1L3	sel-1 suppressor of lin-12-like 3 (C. elegans)
C7	complement component 7
TPD52	tumor protein D52
NR4A2	nuclear receptor subfamily 4, group A, member 2
GBP1	guanylate binding protein 1, interferon-inducible
ERAP2	endoplasmic reticulum aminopeptidase 2
COL1A1	collagen, type I, alpha 1
ATF3	activating transcription factor 3
CD27	CD27 molecule
ADAM28	ADAM metallopeptidase domain 28
MS4A1	membrane-spanning 4-domains, subfamily A, member 1
LCK	LCK proto-oncogene, Src family tyrosine kinase
IGHV1-69	immunoglobulin heavy variable 1-69
CCL5	chemokine (C-C motif) ligand 5
EGR1	early growth response 1
TPD52	tumor protein D52
HLA-DRB4	major histocompatibility complex, class II, DR beta 4
KLF4	Kruppel-like factor 4 (gut)
PLPP3	phospholipid phosphatase 3
BLNK	B-cell linker
NCF1	neutrophil cytosolic factor 1
JUNB	jun B proto-oncogene
FLRT2	fibronectin leucine rich transmembrane protein 2
GZMK	granzyme K
HLA-DQB1	major histocompatibility complex, class II, DQ beta 1
MS4A1	membrane-spanning 4-domains, subfamily A, member 1
NEAT1	nuclear paraspeckle assembly transcript 1 (non-protein coding)
GADD45B	growth arrest and DNA-damage-inducible, beta
SLC39A8	solute carrier family 39 (zinc transporter), member 8
XIST	X inactive specific transcript (non-protein coding)
COL1A1	collagen, type I, alpha 1
CD52	CD52 molecule
IGHM	immunoglobulin heavy constant mu
FABP4	fatty acid binding protein 4, adipocyte
GBP1	guanylate binding protein 1, interferon-inducible
SDC1	syndecan 1
CD3D	CD3d molecule, delta (CD3-TCR complex)
CYP4B1	cytochrome P450, family 4, subfamily B, polypeptide 1
GUSBP11	glucuronidase, beta pseudogene 11
	continues on the next page

Gene symbol	Gene title
HLA-DPA1	major histocompatibility complex, class II, DP alpha 1
SOCS3	suppressor of cytokine signaling 3
SLC19A2	solute carrier family 19 (thiamine transporter), member 2
SDC1	syndecan 1
GZMA	granzyme A
IL32	interleukin 32
SFRP1	secreted frizzled-related protein 1
CCL13	chemokine (C-C motif) ligand 13
PTGS2	prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)
CCR2	chemokine (C-C motif) receptor 2
CYTIP	cytohesin 1 interacting protein
CYR61	cysteine-rich, angiogenic inducer, 61
IL2RG	interleukin 2 receptor, gamma
MAOA	monoamine oxidase A
FKBP5	FK506 binding protein 5
LAMP3	lysosomal-associated membrane protein 3
PTPRC	protein tyrosine phosphatase, receptor type, C
TPD52	tumor protein D52
CD2	CD2 molecule
MMP3	matrix metallopeptidase 3
FKBP11	FK506 binding protein 11
PTPRC	protein tyrosine phosphatase receptor type C
HASI	hvaluronan synthase 1
NR4A1	nuclear receptor subfamily 4 group A member 1
SPP1	secreted phosphoprotein 1
KI FQ	Krunnel-like factor 9
TRAC	T-cell recentor alpha constant
GADD45B	growth arrest and DNA-damage-inducible beta
RASGRP1	RAS guanyl releasing protein 1 (calcium and DAG-regulated)
ALOX5	arachidonate 5-linoxygenase
I PI	linonrotein linace
	interleukin 7 recentor
PSMR0	protessome subunit beta 0
PCK1	phoendonu subulit beta y
	neurotrophic turocine kinase recentor turo 2
SEDD1	secreted frizzled related protein 1
FCER	enidermal growth factor recentor
MZB1	marginal zone B and B1 call energing
	ATD binding coscatte subfamily A member 8
	colute carrier family 20 (rine transporter), member 9
SI AME9	Source carrier family 39 (2nic transporter), member 0
SLAMF0	SLAM family member 8
SEMATD	demain (comenharin) 4D
NIC7	uomani, (semaphorin) 4D
	natural killer cell granule protein /
	secreteu Irizzieu-relateu proteini 1
CACLII	chemokine (C-A-C motil) ligand 11
	continues on the next page

Gene symbol	Gene title
BTN3A2	butyrophilin, subfamily 3, member A2
GPRC5A	G protein-coupled receptor, class C, group 5, member A
PRKCB	protein kinase C. beta
II.6	interleukin 6
APOBEC3G	apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G
MREG	melanoregulin
CXCL11	chemokine (C-X-C motif) ligand 11
NTRK2	neurotrophic tyrosine kinase receptor type 2
IL 21R	interleukin 21 recentor
ZEP36L2	ZFP36 ring finger protein-like 2
ITGA4	integrin alpha 4
I GALS2	lectin galactoside-binding soluble 2
TXNIP	thioredoxin interacting protein
GDF15	growth differentiation factor 15
RGS16	regulator of G-protein signaling 16
FDNRB	endothelin receptor type B
ACACB	acetyl-CoA carboxylase beta
IER2	immediate early response 2
ZFP36	ZFP36 ring finger protein
HLA-DOB1	major histocompatibility complex, class II. DO beta 1
FCMR	Fc fragment of IgM receptor
LOXL1	lvsvl oxidase-like 1
BTN3A3	butvrophilin, subfamily 3, member A3
FCGR1B	Fc fragment of IgG, high affinity Ib, receptor (CD64)
KLF4	Kruppel-like factor 4 (gut)
МҮС	v-myc avian myelocytomatosis viral oncogene homolog
TRAF3IP3	TRAF3 interacting protein 3
CCR7	chemokine (C-C motif) receptor 7
TMEM259	transmembrane protein 259
AIM1	absent in melanoma 1
LEF1	lymphoid enhancer-binding factor 1
RRM2	ribonucleotide reductase M2
COL1A2	collagen, type I, alpha 2
CCL19	chemokine (C-C motif) ligand 19
TRAC	T-cell receptor alpha constant
RGS16	regulator of G-protein signaling 16
ADM	adrenomedullin
6-Sep	septin 6
SRRM2	serine/arginine repetitive matrix 2
CCR5	chemokine (C-C motif) receptor 5 (gene/pseudogene)
ACACB	acetyl-CoA carboxylase beta
STAT1	signal transducer and activator of transcription 1
IRF4	interferon regulatory factor 4
TLR7	toll-like receptor 7
LAMA2	laminin, alpha 2
COL6A1	collagen, type VI, alpha 1
	continues on the next page

Gene symbol	Gene title
COL5A1	collagen, type V, alpha 1
GABARAPL1	GABA(A) receptor-associated protein like 1
FKBP11	FK506 binding protein 11
JUN	jun proto-oncogene
GAP43	growth associated protein 43
FCGR2B	Fc fragment of IgG, low affinity IIb, receptor (CD32)
CORO1A	coronin, actin binding protein, 1A
ADAMTS1	ADAM metallopeptidase with thrombospondin type 1 motif 1
CD38	CD38 molecule
UCP2	uncoupling protein 2 (mitochondrial, proton carrier)
HLA-DQB1	major histocompatibility complex, class II, DQ beta 1
PLA2G2D	phospholipase A2, group IID
PRKCB	protein kinase C, beta
HLA-DQB1	major histocompatibility complex, class II, DQ beta 1
HBEGF	heparin-binding EGF-like growth factor
IL27RA	interleukin 27 receptor, alpha
SH2D1A	SH2 domain containing 1A
EFNB2	ephrin-B2
RTN1	reticulon 1
GIMAP6	GTPase, IMAP family member 6
GPX3	glutathione peroxidase 3
RRM2	ribonucleotide reductase M2
ASPN	asporin
COL5A1	collagen, type V, alpha 1
EDNRB	endothelin receptor type B
SOX9	SRY box 9
BHLHE40	basic helix-loop-helix family, member e40
LTBP4	latent transforming growth factor beta binding protein 4
VOPP1	vesicular, overexpressed in cancer, prosurvival protein 1
ANGPTL7	angiopoietin like 7
EDNRB	endothelin receptor type B
CEBPD	CCAAT/enhancer binding protein (C/EBP), delta